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There are three components of a function:

body() : the code inside the function
formals() : the list of arguments which
controls how you can call the function
environment()  the "map" of the location
of the function's variables

formals(sample)

## $x
## 
## 
## $size
## 
## 
## $replace
## [1] FALSE
## 
## $prob
## NULL

body(sample)

environment(sample)

## <environment: namespace:base>

What are functions?
A function is a chunk of R code that (typically) takes a set of inputs (i.e., arguments) and performs some
sort of operation on them.

## {
##     if (length(x) == 1L && is.numeric(x) 
##         1) {
##         if (missing(size)) 
##             size <- x
##         sample.int(x, size, replace, prob
##     }
##     else {
##         if (missing(size)) 
##             size <- length(x)
##         x[sample.int(length(x), size, rep
##     }
## }

The sample()  function randomly samples size draws from a given vector
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Function Output
Often a function will return an object. For example:

mean()  returns a numeric vector of length 1
sample()  returns a numeric vector of length size
typeof()  returns a character vector of length 1
cor()  returns a matrix of size rows  columns
lm()  returns lists nested in a list of length 12

When a function returns an object, you'll often want to assign that object to
save the output. For example:

shuffled_letters <- sample(letters, length(letters))
shuffled_letters

##  [1] "c" "o" "r" "t" "q" "n" "b" "v" "f" "u" "p" "j" "e" "d" "h" 
## [20] "i" "k" "a" "l" "x" "s" "y"

×
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Functions don't always return an object. Sometimes they print text to the
console or perform some other operation on your computer

# Has no return value, just prints text!
message("This is a message!")

## This is a message!

# This just runs another R script!
source("My Script.R")

The data that you give (i.e., pass) a function are called arguments. Functions can have an
unlimited amount of arguments. You can view the arguments of a function in the help pages:
?function_name

When you call a function, you can specify the argument names or you can choose not to. If
you do not specify argument names, you must pass them in the order the function is written
in. Otherwise you have to specify the argument name.

# 300 random draws from normal distribution mean = 5, sd = 10
rnorm(300, 5, 10)

# Same
rnorm(sd = 10, n = 300, mean = 5)
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cowsay::say("Isn't R cool?!",
            by = "cow")

See ?cowsay::say  for other
animals and options!

## 
##  ----- 
## Isn't R cool?! 
##  ------ 
##     \   ^__^ 
##      \  (oo)\ ________ 
##         (__)\         )\ /\ 
##              ||------w|
##              ||      ||

Packages
What if there isn't a function in base R for something you want to do?

One of R's greatest features is the ability to extend the functionality of base R
with packages (bundles of code that others have written to perform a set of
tasks)

Anybody can write a package, which means that there are a lot of packages
available - 17,911 at the time of this lecture - for you to use (for free!). If you
need to do something base R cannot, chances are there's a package for it.

There's even an R package to generate ASCII art!
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Also, because anybody can write an
R package, you might find yourself
using a package that is not well built
or, even worse, contains malicious
code

Installing Packages: A Warning
R packages are typically high quality and trustworthy. However, even the best
packages contain bugs!

Bottom line: It is important to vet the packages you use prior to installing them!

Look for:

Names/organizations of well-known developers
Extensive documentation (including source code)

Package citations1

[1] It is good practice to cite package names and versions in your manuscripts. See ?
citation  and ?packageVersion  for help
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User-de�ned Functions
What if you want to do something that can't be done with a pre-written function from base R
or a package? Don't worry! One of the primary strengths of using R for your analyses is the
ability to write code that does basically whatever you want.

Functions are just another type of object in R. To create a function object, use the
function()  function.

From help("function") :

function( arglist ) expr
return(value)
\( arglist ) expr # we'll talk about this later

arglist  is a comma separated list of the arguments that your function will take
for example: sample()  takes 4 arguements: x , size , replace , and prob
there's no limit to how many arguments you can take
arguments can have default values such as replace=  in sample()

expr  is the R code that the function will execute each time it is called
return  is a special function that denotes the return value (i.e., the output of the
function)
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Example: firstlast()
Let's write a function that takes a vector as input and outputs a named vector of the first and
last elements:

firstlast <- function(x) {
    first <- x[1]
    last  <- x[length(x)]
    return(c("first" = first, "last" = last))
}

Test it out:

firstlast(c(4, 3, 1, 8))

## first  last 
##     4     8

set.seed(1)
firstlast(sample(1:99999999))

##    first     last 
## 66608964 39153287
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firstlast(10)

## first  last 
##    10    10

firstlast(numeric())

## first 
##    NA

firstlast(mtcars)

Testing firstlast()
When writing your own function, it is important that you think about how the
function will be used. This is particularly important if you are writing a
function that others will use, and you can't anticipate exactly what the input
will be.

For example: What happens if I pass firstlast()  the following objects?

## $first.mpg
##  [1] 21.0 21.0 22.8 21.4 18.7
## [16] 10.4 14.7 32.4 30.4 33.9
## [31] 15.0 21.4
## 
## $last.carb
##  [1] 4 4 1 1 2 1 4 2 2 4 4 3 
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Checking Inputs
Using a combination of if/else  statements and stop()  (which stops the function from
running and prints the text inside as an error message), you can make sure valid
information is passed to your function

firstlast <- function(x){

  # Check that x is valid
  if(!is.vector(x) || length(x) < 2){
    stop("`x` needs to be vector of length 2 or larger")
  }

  first <- x[1]
  last  <- x[length(x)]
  return(c("first" = first, "last" = last))
}

firstlast(10)

## Error in firstlast(10): `x` needs to be vector of length 2 or larger

firstlast(mtcars)

## Error in firstlast(mtcars): `x` needs to be vector of length 2 or larger
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Example: Reporting Quantiles
reportQuantiles <- function(x, na.rm = FALSE){
  quants <- quantile(x = x,
                     na.rm = na.rm,
                     probs = c(0.01, 0.05, 0.10, 0.25, 0.50,
                               0.75, 0.90, 0.95, 0.99))

  names(quants) <- c("Bottom 1%", "Bottom 5%", "Bottom 10%", "Bottom 25%",
                     "Median", "Top 25%", "Top 10%", "Top 5%", "Top 1%")

  return(quants)
}

reportQuantiles(rnorm(100000))

##    Bottom 1%    Bottom 5%   Bottom 10%   Bottom 25%       Median      Top 25% 
## -2.317959618 -1.642248613 -1.283682278 -0.674976854 -0.006112585  0.668551795 
##      Top 10%       Top 5%       Top 1% 
##  1.276930110  1.639988060  2.339787800

Notice the na.rm = FALSE  argument. This is a default, which means that if the user does not
specify what they want na.rm  to be, it will automatically be `FALSE

You can call reportQuantiles()  as many times as you need without writing the internal
code over and over
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Functions Without Arguments
Sometimes you may want to write a function that takes no arguments, but still
does something useful

For example, let's write a function that simulates a flip of a nickel. There's a
49.99% chance the nickel lands on heads, a 49.99% chance it lands on tails, and
a 1 in 6000 (0.02%) chance it lands on it's edge

flipNickel <- function(){
  sideup <- sample(x = c("heads", "tails", "edge"),
                   size = 1,
                   prob = c(.5-1/6000, .5-1/6000, 1/6000))

  return(sideup)
}

flipNickel()

## [1] "tails"

Note. You can effectively achieve a 50/50 coinflip using the rbinom()  function, which
is a vectorized function that randomly draws values from the binomial distribution
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Example 1

varA <- "A"
varB <- "B"

myFunc <- function(){
  varA <- "X"
  varB <- "Y"
  return(paste(varA, varB))
}

myFunc()
paste(varA, varB))

Example 2

varA <- "A"
varB <- "B"
varC <- "C"

myFunc <- function(){
  varA <- "X"
  varB <- "Y"
  return(paste(varA, varB, varC))
}

myFunc()
paste(varA, varB, varC))

Lexical Scoping
When you call an object in R (referring to a variable, calling a function), R has
to know where to look for it. R first looks in the environment that the object
was created in. If it doesn't find it there, it goes up one level to the parent
environment, etc.

Consider the following examples. What do you think the output will be?
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Example 1

varA <- "A"
varB <- "B"

myFunc <- function(){
  varA <- "X"
  varB <- "Y"
  return(paste(varA, varB))
}

myFunc()

## [1] "X Y"

paste(c(varA, varB))

## [1] "A" "B"

Example 2

varA <- "A"
varB <- "B"
varC <- "C"

myFunc <- function(){
  varA <- "X"
  varB <- "Y"
  return(paste(varA, varB, varC))
}

myFunc()

## [1] "X Y C"

paste(c(varA, varB, varC))

## [1] "A" "B" "C"

When an object is called inside a function, R looks within that function for the object
(Example 1). If R cannot find that object in the function, it searches its parent environment
(the global environment; Example 2).
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R Only Searches Upwards
R will search as many parent environments as it needs to find a object, but it
will never search downwards (i.e., into child environments)

myFunc <- function(){
  myVector <- 1:5
  myOtherVector <- letters[1:5]
  return(paste0(myVector, myOtherVector))
}

myFunc()

## [1] "1a" "2b" "3c" "4d" "5e"

exists("myVector")

## [1] FALSE

exists("myOtherVector")

## [1] FALSE
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<<-
The <<-  assignment operator works similar to the <-  operator except it forces R to make the
assignment in the global environment. Unless you have a good reason not to do so, you
should stick with the <-  operator for assignment (it keeps your code clean and bug free).

myFunc <- function(){
  myVector <<- 1:5
  myOtherVector <<- letters[1:5]
  return(paste0(myVector, myOtherVector))
}

myFunc()

## [1] "1a" "2b" "3c" "4d" "5e"

exists("myVector")

## [1] TRUE

exists("myOtherVector")

## [1] TRUE
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dot-dot-dot (...)
Many functions in R take an arbitrary number of targets but still work. These
functions rely on the special 'dot-dot-dot' argument: ...

Let's create a function that takes an arbitrary number of strings and pastes
them together as one comma-separated string:

csString <- function(...){
  args <- c(...)
  string <- paste0(args, collapse = ", ")
  return(string)
}

csString("a", "b", "c")

## [1] "a, b, c"

csString("Apples", "Bananas", "Carrots", "Dates")

## [1] "Apples, Bananas, Carrots, Dates"
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...
The ...  argument is particularly useful when you are writing your own
function that calls another function, and you want to allow the user to specify
as many (or as few) arguments for that function as they would like.

For example, it's often useful to write your own functions to create the same
plots from different data. Because plot()  takes so many arguments, you
wouldn't (and couldn't because plot()  also has the ...  argument!) want to
write all the argument names and their defaults in your own function.

myPlot <- function(...){
  arglist <- list(...)
  plot(axes = FALSE, pch = 20, ...)
  box()
  axis(side = 1, lwd = 0, lwd.ticks = 1)
  axis(side = 2, las = 1, lwd = 0, lwd.ticks = 1)
  abline(v = mean(arglist$x),
         h = mean(arglist$y))
  abline(lm(arglist$y ~ arglist$x), col = "blue")
}
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myPlot(x = mtcars$mpg, y = mtcars$hp)
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myPlot(x = mtcars$mpg, y = mtcars$qsec, col = "purple",
       main = "1/4 mile time by mpg")
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dim(cbind(mtcars, mtcars))

## [1] 32 22

same as 👉

dat <- cbind(mtcars, mtcars)
dim(dat)

## [1] 32 22

1 + 2 * 3 / 4^5

## [1] 1.005859 ## [1] 1.005859

function(function(function()))
Functions can be supplied as arguments to other functions and R will evaluate
the functions inside out

There's no limit to how nested your functions can get and, as we will see next
week, it is quite common to have several layers of nested functions.

For example, technically this is a deeply nested function:

`+`(1, `/`(`*`(2, 3), `^`(4, 5)
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Another Nested Function Example
Suppose you want to summarize the mtcars  dataframe by the numbers of
cylinders in each car (4, 6, or 8), you only want to do this for the cars with
more than 100 horsepower, and you want to add a column that converts miles
per gallon (mpg) to kilometers per liter (kpl):

transform(aggregate(formula = . ~ cyl,
                    data = subset(mtcars, hp > 100),
                    FUN = function(x) round(mean(x), 2)),
          "kpl" = mpg*0.425144)

Although this code works, it takes a lot of energy to read it and understand
what's going on

##   cyl   mpg   disp     hp drat   wt  qsec   vs   am gear carb     
## 1   4 25.90 108.05 111.00 3.94 2.15 17.75 1.00 1.00 4.50 2.00 11.
## 2   6 19.74 183.31 122.29 3.59 3.12 17.98 0.57 0.43 3.86 3.43  8.
## 3   8 15.10 353.10 209.21 3.23 4.00 16.77 0.00 0.14 3.29 3.50  6.
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magrittr

The magrittr  package in R introduced the pipe operator (%>% ) to make nested function calls more
intuitive to write and easier to read

lhs %>% rhs

lhs  (left hand side) is the function that you are piping to the rhs  (right hand side)

For example, let's compute a correlation matrix for columns 1 through 5 of the swiss dataframe for
those rows where Infant.Mortality  is greater than its mean:

swiss %>%
  subset(Infant.Mortality > mean(Infant.Mortality),
         select = 1:5) %>%
  cor()

##              Fertility Agriculture Examination  Education   Catholic
## Fertility    1.0000000   0.2913229  -0.6813507 -0.4716997  0.7231541
## Agriculture  0.2913229   1.0000000  -0.4729718 -0.6269116  0.2675015
## Examination -0.6813507  -0.4729718   1.0000000  0.7462636 -0.5308847
## Education   -0.4716997  -0.6269116   0.7462636  1.0000000 -0.2594915
## Catholic     0.7231541   0.2675015  -0.5308847 -0.2594915  1.0000000
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Revisiting Our Nested Function
You'll recall:

transform(aggregate(formula = . ~ cyl,
                    data = subset(mtcars, hp > 100),
                    FUN = function(x) round(mean(x), 2)),
          "kpl" = mpg*0.425144)

🪄
mtcars %>%
  subset(hp > 100) %>%
  aggregate(. ~ cyl, data = ., FUN = . %>% mean %>% round(2)) %>%
  transform(kpl = mpg*0.425144)

This is much easier to read and write!
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1:5 %>% sum()

## [1] 15

1:5 %T>% sum()

## [1] 1 2 3 4 5

Other magrittr  Pipes
The magrittr  package has several other pipes that can be useful (but that are less
commonly used):

%T>%  'tee' pipe: works like %>%  but returns the lhs (good for rhs functions with no
return value - like plots)

%$%  'exposition' pipe: exposes the names of the lhs object to the rhs object

mtcars %$% cor(disp, qsec)

## [1] -0.4336979

%<>%  'assignment' pipe: the result of the pipe is assigned to the lhs object (equivalent to
lhs <- lhs %>% rhs ). It is generally discouraged to use this pipe.

swiss$Catholic %<>% sqrt()
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Base R Pipe: |>
Recently (May 18, 2021) R version 4.1.0 was released with a base R pipe
operator: |>

|>  works in much the same way as magrittr::%>% , except that .  cannot be
used to reference the lhs  object:

10 %>% sample(1:5, ., TRUE)

##  [1] 1 5 4 2 5 1 5 4 3 2

10 |> sample(1:5, ., TRUE)

## Error in sample.int(x, size, replace, prob): object '.' not found

Instead, you have to create an anonymous function

10 |> {function(x) sample(1:5, x, TRUE)}()

##  [1] 4 3 3 2 3 5 5 4 5 4
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The Anonymous Function
An anonymous function (also known as a lambda function) differs from all other functions
in that it does not have a name . Anonymous functions are usually arguments to a higher-
order (parent) function.

Up until May 18, 2021, anonymous functions were created the same way all other functions
are created: the function()  function. However, many people thought these was too
verbose and, following the lead of other programming languages, made a shorthand for
function() : \()

Technically \()  can be used to write all your functions. For example:

# These are equivalent
addOne <- function(x) return(x + 1)
addOne <- \(x) return(x + 1)

In practice, however, \()  will only be used to write anonymous functions, and you should
follow that custom (for code readability)

Note. If you are worried about your code being backwards compatible (e.g., because you are collaborating
with a large group), avoid using |>  and \()  for a little while
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Debugging Functions
errorFunction <- function(){
  a <- "a"
  b <- "b"
  stop("The error occurs here.")
  c <- "c"
}

errorFunction()

## Error in errorFunction(): The error occurs here.

Often it won't be clear what is causing a certain bug (unlike the above example). Sometimes
it's a typo in your code, sometimes its an invalid argument.

To debug a function use the debug()  function.

debug(errorFunction)

When you are finished debugging, use undebug()  so you won't go into debug mode every
time the function is called

undebug(errorFunction)
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Recursive functions
A recursive function is a function that calls itself. Recursive functions are useful in
situations where problems can be broken down into smaller, repetitive problems, or when
you need to iterate over arbitrarily nested objects.

myFactorial <- function(number){
  if(number == 0){
    return(1)
  } else{
    return(number * myFactorial(number-1))
  }
}

myFactorial(5)

## [1] 120

This evaluated as:

1. 1
2. 2 * myFactorial(1)
3. 3 * myFactorial(2)
4. 4 * myFactorial(3)
5. 5 * myFactorial(4)
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Making an Operator
Now that we know how to make our own functions we can make our own
operators. These operators are known as infix operators because they are
placed between arguments. + , - , * , / , %*% , %in% , etc. are all infix operators.

An example:
Many programming languages have shorthand operators for incrementing and
decrementing variables:

+=  (add the rhs to the lhs: lhs <- lhs + rhs )
-=  (subtracts the rhs from the lhs: lhs <- lhs - rhs )
++  (adds one to a variable: lhs <- lhs + 1 )
--  (subtracts one from a variable: lhs <- lhs - 1 )

These are very useful in loops:

count <- 0
while(count < 10){
  count++ # instead of count <- count + 1
  print(count)
}
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value <- 0
value %+=% 5
print(value)

## [1] 5

value %+=% 5
print(value)

## [1] 10

value <- 20
value %-=% 5
print(value)

## [1] 15

value %-=% 5
print(value)

## [1] 10

Unfortunately R doesn't come with these operators. But we can make our own very easily!

`%+=%` <- function(lhs, rhs){
  # Evaluates the expression in the parent frame
  # `substitute()` needed so the expression does
  # not run in the eval.parent() call
  eval.parent(substitute(lhs <- lhs + rhs))
}

`%-=%` <- function(lhs, rhs){
  eval.parent(substitute(lhs <- lhs - rhs))
}
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What about not %in%?
Recall that the %in%  operator returns a vector of the positions of the lhs vector that are in
the rhs vector:

1:5 %in% 1:3

## [1]  TRUE  TRUE  TRUE FALSE FALSE

We can inverse this to get the opposite, but it is a bit hard to read:

!1:5 %in% 1:3

## [1] FALSE FALSE FALSE  TRUE  TRUE

We can invert or negate1 %in%  to get a "not in" operator:

`%!in%` <- Negate(`%in%`)
1:5 %!in% 1:3

## [1] FALSE FALSE FALSE  TRUE  TRUE

[1] Negate()  produces logical negations of functions, inverting their output. For example:
is.not.numeric <- Negate(is.numeric)
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Classes and Methods
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Classes
Objects in R are instances of one or more classes. A class defines the behavior
of an object.

To get the class of an object, use the class()  function:

class(1:10)

## [1] "integer"

class(letters)

## [1] "character"

class(mean)

## [1] "function"

class(mtcars)

## [1] "data.frame"
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Methods
A method is a function associated with a specific class. There are many
generic functions in R which change their behavior depending on the class of
the object which it is passed.

Methods are denoted by .classname  after the generic function name. For
example, let's take a look at the summary  generic function, which has 34
methods:

head(methods(summary))

This means that when summary is passed an object of class aov  (print.aov)
it works differently than when it is passed a data.frame
(print.data.frame)

## [1] "summary.aov"                   "summary.aovlist"             
## [3] "summary.aspell"                "summary.check_packages_in_di
## [5] "summary.connection"            "summary.data.frame"
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Making Our Own Method
Making your own method is just like making your own function, except you
need to name the function accordingly: generic.class()

To assign an object a class, use the class()  function

string <- "Please print me!"
class(string)

## [1] "character"

print(string)

## [1] "Please print me!"

class(string) <- "refuseprint"
class(string)

## [1] "refuseprint"
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string <- "Please print me!"

# print() method for objects of r class `refuseprint`
print.refuseprint <- function(x){
  print("I refuse to print!!!")
}

# Notice that I don't need to call `print.refuseprint()`
# R knows what to do!
print(string)

## [1] "I refuse to print!!!"

Side Note: This is why it is generally frowned upon to name objects using dot
notation (e.g., day.one , participant.ID). The .  actually means something,
so it's best to reserve it for its purpose!
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Revisiting Loops
apply() et al.

apply()
lapply()
sapply()
mapply()
tapply()
replicate()
sweep()
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Disclaimer
The apply  family of functions (*apply) offer a different way to loop in R

Some people argue that these functions are faster (to write and also to
execute) than for  loops.

1. *apply  is not faster to execute than a for  loop, generally speaking
2. *apply  may be faster to write (but may also not be)

Advantages of *apply
You do not need to pre-allocate
In some cases they may be faster than for loops (and in other cases they
may not be)
In some case they're easier to read (and sometimes they are not)

Bottom line: Use the tool that (a) makes most sense for your problem, (b)
works for you and your collaborators, and (c) you feel confident with
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# Vector    👇 anonymous function
lapply(1:3, function(x) x^2)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 4
## 
## [[3]]
## [1] 9

You can also use a named function 👇

square <- function(x) x^2
lapply(1:3, square)

## $One
## [1] "integer"
## 
## $Two
## [1] "lm"
## 
## $Three
## [1] "data.frame"

lapply()
lapply(X, FUN, ...)

lapply()  iterates over X  (a vector, list, or columns of a data frame), applies the FUN
function to each element, and returns a list. The ...  argument allows you to pass additional
arguments into FUN

# List
myList <- list("One" = 1:10,
               "Two" = lm(qsec ~ hp, mt
               "Three" = mtcars)
lapply(myList, function(x) class(x))

40 / 52



UNIVERSITY OF WASHINGTON

lapply(mtcars, mean) lapply(mtcars, mean, na.rm = T)

... in lapply
The ...  in lapply  allow you to supply additional arguments to FUN .

For example, let's take the mean across each column of mtcars:1

# Equivalent to:
lapply(mtcars, function(x) mean(x, na.rm = T))

## $mpg
## [1] NA
## 
## $cyl
## [1] NA
## 
## $disp
## [1] NA
## 
## $hp
## [1] NA
## 

## $mpg
## [1] 20.06129
## 
## $cyl
## [1] 6.193548
## 
## $disp
## [1] 233.0032
## 
## $hp
## [1] 147.871
## 

[1] I introduced some NAs into mtcars  for this example
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lapply(1:3, function(x) x^2)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 4
## 
## [[3]]
## [1] 9

sapply(1:3, function(x) x^2)

## [1] 1 4 9

sapply(): Simple lapply()
A downside of lapply()  is that lists can be hard to work with and are also less common
than other data types (vectors, dataframes, matrices). sapply()  simplifies the output by
returning a vector or a matrix

sapply()  is a wrapper for lapply() , which means that it calls lapply()  itself, then does
some extra work for you

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = FALSE)

X , FUN , and ...  are the same as in lapply()
simplify : if TRUE , returns a vector or matrix (whichever is most appropriate), if
FALSE  returns a list
USE.NAMES : if TRUE  and X  is character, use X  as names for result
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apply()
apply()  iterates over the margins of an array1 (or matrix or dataframe)

apply(X, MARGIN, FUN, ..., simplify = TRUE)

X : an array (or matrix or dataframe)
MARGIN : a vector specifying the subscripts that the function will be
applied over

1  = rows
2  = columns
c(1, 2)  = rows and columns

... : additional arguments to FUN
simplify : if TRUE  results are simplified to a vector, matrix, or dataframe
(whichever is appropriate), if FALSE  a list is returned

[1] an array  is an object that can store data in more than 2 dimensions. We aren't
talking about them in this class, but see ?array  for more info
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apply(): Examples

# Take the mean down all rows, across all columns
apply(mtcars, 1, mean)

##           Mazda RX4       Mazda RX4 Wag          Datsun 710      
##            29.90727            29.98136            23.59818       
##   Hornet Sportabout             Valiant          Duster 360       
##            53.66455            35.04909            59.72000       
##            Merc 230            Merc 280           Merc 280C       
##            27.23364            31.86000            31.78727       
##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Linco
##            46.50000            46.35000            66.23273       
##   Chrysler Imperial            Fiat 128         Honda Civic      
##            65.97227            19.44091            17.74227       
##       Toyota Corona    Dodge Challenger         AMC Javelin       
##            24.88864            47.24091            46.00773       
##    Pontiac Firebird           Fiat X1-9       Porsche 914-2       
##            57.37955            18.92864            24.77909       
##      Ford Pantera L        Ferrari Dino       Maserati Bora       
##            60.97182            34.50818            63.15545       
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apply(): Examples

# Take the mean down all rows, across all specified columns
apply(mtcars[, c("cyl", "drat", "wt")], 1, mean)

##           Mazda RX4       Mazda RX4 Wag          Datsun 710      
##            4.173333            4.258333            3.390000       
##   Hornet Sportabout             Valiant          Duster 360       
##            4.863333            4.073333            4.926667       
##            Merc 230            Merc 280           Merc 280C       
##            3.690000            4.453333            4.453333       
##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Linco
##            4.933333            4.950000            5.393333       
##   Chrysler Imperial            Fiat 128         Honda Civic      
##            5.525000            3.426667            3.515000       
##       Toyota Corona    Dodge Challenger         AMC Javelin       
##            3.388333            4.760000            4.861667       
##    Pontiac Firebird           Fiat X1-9       Porsche 914-2       
##            4.975000            3.338333            3.523333       
##      Ford Pantera L        Ferrari Dino       Maserati Bora       
##            5.130000            4.130000            5.036667       
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apply(): Examples

# Take the sum across all columns
apply(mtcars, 2, sum)

# Add 3 to all values
mtcars_p3 <- apply(mtcars, 1:2, function(x) x + 3)
head(mtcars_p3)

##      mpg      cyl     disp       hp     drat       wt     qsec    
##  642.900  198.000 7383.100 4694.000  115.090  102.952  571.160   
##       am     gear     carb 
##   13.000  118.000   90.000

##                    mpg cyl disp  hp drat    wt  qsec vs am gear c
## Mazda RX4         24.0   9  163 113 6.90 5.620 19.46  3  4    7   
## Mazda RX4 Wag     24.0   9  163 113 6.90 5.875 20.02  3  4    7   
## Datsun 710        25.8   7  111  96 6.85 5.320 21.61  4  4    7   
## Hornet 4 Drive    24.4   9  261 113 6.08 6.215 22.44  4  3    6   
## Hornet Sportabout 21.7  11  363 178 6.15 6.440 20.02  3  3    6   
## Valiant           21.1   9  228 108 5.76 6.460 23.22  4  3    6   
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mapply()
mapply()  is a multivariate version of sapply()

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

...  is a list of arguments to iterate over
MoreArgs  is a list  of other arguments to pass to FUN

mapply(rep, 1:3, 7:5)

## [[1]]
## [1] 1 1 1 1 1 1 1
## 
## [[2]]
## [1] 2 2 2 2 2 2
## 
## [[3]]
## [1] 3 3 3 3 3

You can have has many ...  as you want!

mapply(sum, 1:3, 4:6, 7:9)

## [1] 12 15 18

47 / 52



UNIVERSITY OF WASHINGTON

replicate()
replicate()  is a wrapper for a special case of sapply()  where a single
expression is replicated repeatedly

replicate(n, expr, simplify = "array")

n  integer: the number of replications
expr : the expression (i.e., R code) to evaluate n times
simplify  used to specify desired return value
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replicate(): Example
replicate()  is really good for conducting simulations because essentially all you are doing
is repeatedly sampling from the same distrubtion

Let's simulate 10,000 samples of n = 300 from a uniform distribution (equal probability of all
values, 0 to 10) and plot the means. Why are these values normally distributed?

replicate(10000, mean(runif(300, 0, 10))) %>%
  hist(main = "", xlab = "", breaks = 25)
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sweep()
sweep()  sweeps out a summary statistic from an input array (typically a
matrix or dataframe)

sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...)

x : an array (or matrix or dataframe)

MARGIN : a vector of indices which correspond with STATS  (this is typically
columns [2] but can be rows [1] or both [c(1, 2)])

STATS : the summary statistic to be swept out (typically a vector)

FUN : the function to be used to carry out the sweep (default is to
substract)

check.margin : if TRUE  warn if length(STATS)  doesn't match
length(x)
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sweep(): Example
It is often desired to center a variable prior to analysis. sweep()  can be used to quickly center a bunch
of columns in one call:

mtcars_c <- sweep(x = mtcars,
                  MARGIN = 2,
                  STATS = colMeans(mtcars))

head(mtcars)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

head(mtcars_c) |> round(1)

##                    mpg  cyl   disp    hp drat   wt qsec   vs   am gear carb
## Mazda RX4          0.9 -0.2  -70.7 -36.7  0.3 -0.6 -1.4 -0.4  0.6  0.3  1.2
## Mazda RX4 Wag      0.9 -0.2  -70.7 -36.7  0.3 -0.3 -0.8 -0.4  0.6  0.3  1.2
## Datsun 710         2.7 -2.2 -122.7 -53.7  0.3 -0.9  0.8  0.6  0.6  0.3 -1.8
## Hornet 4 Drive     1.3 -0.2   27.3 -36.7 -0.5  0.0  1.6  0.6 -0.4 -0.7 -1.8
## Hornet Sportabout -1.4  1.8  129.3  28.3 -0.4  0.2 -0.8 -0.4 -0.4 -0.7 -0.8
## Valiant           -2.0 -0.2   -5.7 -41.7 -0.8  0.2  2.4  0.6 -0.4 -0.7 -1.8
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Mean miles per gallon by automatic (0) or
manual (1) transmission

tapply(mtcars$mpg, mtcars$am, mean)

##        0        1 
## 17.14737 24.39231

Mean miles per gallon by automatic (0) or
manual (1) transmission and number of
cylinders (4, 6, or 8)

##        4        6     8
## 0 22.900 19.12500 15.05
## 1 28.075 20.56667 15.40

tapply()
tapply()  is used to apply a function over descrete subsets of an array

tapply(X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE)

X : an object that allows for subsetting (almost always a vector!)
INDEX : a list of 1+ vectors (same length as X ) that specify the groups to subset by
FUN : the function to apply to each subset
... : additional arguments to pass to FUN

tapply()  is very useful for looking at descriptive statistics by group

tapply(mtcars$mpg, list(mtcars$am, mtca
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